从 Java 8 开始支持函数式接口。
函数式接口注解 FunctionalInterface
源码:
@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
public @interface FunctionalInterface {}
说明:
根据源码注释,
- 该注解只能用于接口,不能用于注解、枚举、类。
- 被注解的类型,必须满足函数式接口的条件。
函数式接口条件:
- 只能有一个抽象方法(abstract method)。
- default 方法因为是有具体实现的,所以不算抽象方法。
- 抽象方法不能和 java.lang.Object 的方法相同。
函数式接口的实例,可以用于 lambda 表达式、函数引用、构造器引用。
示例
定义函数式接口如下:
@FunctionalInterface
public interface IProcessor<T> {
void process(T t);
}
Java 8 之前的写法:
public class Main {
public static void main(String[] args) {
IProcessor<Long> processor = new IProcessor<Long>() {
@Override
public void process(Long aLong) {
System.out.println(aLong);
}
};
processor.process(123L);
}
}
使用 Java 8 的 lambda 写法:
public class Main {
public static void main(String[] args) {
IProcessor<Long> processor = aLong -> {
System.out.println(aLong);
};
processor.process(123L);
}
}
使用 lambda + 函数引用:
public class Main {
public static void main(String[] args) {
IProcessor<Long> processor = System.out::println;
processor.process(123L);
}
}
函数式接口 Runnable:无参数, 无返回值
全路径: java.lang.Runnable
该接口在 Java 8 之前就存在,从 Java 8 开始加了注解 @FunctionalInterface
。一般用于多线程开发中。
源码:
@FunctionalInterface
public interface Runnable {
/**
* When an object implementing interface <code>Runnable</code> is used
* to create a thread, starting the thread causes the object's
* <code>run</code> method to be called in that separately executing
* thread.
* <p>
* The general contract of the method <code>run</code> is that it may
* take any action whatsoever.
*
* @see java.lang.Thread#run()
*/
public abstract void run();
}
代码示例:
public class Main {
public static void main(String[] args) {
Runnable runnable = () -> {
System.out.println("你好");
};
runnable.run(); // 输出: 你好
}
}
函数式接口 Callable:无参数, 有返回值
全路径: java.util.concurrent.Callable 。
该接口在 Java 8 之前就存在,从 Java 8 开始加了注解 @FunctionalInterface
。一般用于多线程开发的场景中。
非多线程开发,考虑使用 java.util.function.Supplier ,如果认为语义不合适,考虑自定义。
源码:
@FunctionalInterface
public interface Callable<V> {
/**
* Computes a result, or throws an exception if unable to do so.
*
* @return computed result
* @throws Exception if unable to compute a result
*/
V call() throws Exception;
}
注意,这里的 call 方法声明了会抛出异常。使用时,外层函数要catch或者也跟着声明抛出异常。
代码示例:
import java.util.concurrent.Callable;
public class Main {
public static void main(String[] args) throws Exception {
Callable<Long> callable = () -> {
return 100L;
};
System.out.println(callable.call());
}
}
函数式接口 Consumer:1个参数, 无返回值
全路径: java.util.function.Consumer 。
Java 8 中引入。
源码:
package java.util.function;
import java.util.Objects;
/**
* Represents an operation that accepts a single input argument and returns no
* result. Unlike most other functional interfaces, {@code Consumer} is expected
* to operate via side-effects.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #accept(Object)}.
*
* @param <T> the type of the input to the operation
*
* @since 1.8
*/
@FunctionalInterface
public interface Consumer<T> {
/**
* Performs this operation on the given argument.
*
* @param t the input argument
*/
void accept(T t);
/**
* Returns a composed {@code Consumer} that performs, in sequence, this
* operation followed by the {@code after} operation. If performing either
* operation throws an exception, it is relayed to the caller of the
* composed operation. If performing this operation throws an exception,
* the {@code after} operation will not be performed.
*
* @param after the operation to perform after this operation
* @return a composed {@code Consumer} that performs in sequence this
* operation followed by the {@code after} operation
* @throws NullPointerException if {@code after} is null
*/
default Consumer<T> andThen(Consumer<? super T> after) {
Objects.requireNonNull(after);
return (T t) -> { accept(t); after.accept(t); };
}
}
代码示例:
import java.util.function.Consumer;
public class Main {
public static void main(String[] args) {
Consumer<Long> consumer = num -> {
System.out.println("参数是: " + num);
};
consumer.accept(123L);
}
}
执行结果:
参数是: 123
函数式接口 Supplier:无参数, 有返回值
全路径: java.util.function.Supplier 。
Java 8 中引入。
源码:
package java.util.function;
/**
* Represents a supplier of results.
*
* <p>There is no requirement that a new or distinct result be returned each
* time the supplier is invoked.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #get()}.
*
* @param <T> the type of results supplied by this supplier
*
* @since 1.8
*/
@FunctionalInterface
public interface Supplier<T> {
/**
* Gets a result.
*
* @return a result
*/
T get();
}
代码示例:
import java.util.function.Supplier;
public class Main {
public static void main(String[] args) {
Supplier<Long> supplier = () -> {
return System.currentTimeMillis() + 1;
};
System.out.println(supplier.get());
}
}
函数式接口 Function:1个参数, 有返回值
全路径: java.util.function.Function 。
Java 8 中引入。
源码:
/**
* Represents a function that accepts one argument and produces a result.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #apply(Object)}.
*
* @param <T> the type of the input to the function
* @param <R> the type of the result of the function
*
* @since 1.8
*/
@FunctionalInterface
public interface Function<T, R> {
/**
* Applies this function to the given argument.
*
* @param t the function argument
* @return the function result
*/
R apply(T t);
/**
* Returns a composed function that first applies the {@code before}
* function to its input, and then applies this function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of input to the {@code before} function, and to the
* composed function
* @param before the function to apply before this function is applied
* @return a composed function that first applies the {@code before}
* function and then applies this function
* @throws NullPointerException if before is null
*
* @see #andThen(Function)
*/
default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));
}
/**
* Returns a composed function that first applies this function to
* its input, and then applies the {@code after} function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of output of the {@code after} function, and of the
* composed function
* @param after the function to apply after this function is applied
* @return a composed function that first applies this function and then
* applies the {@code after} function
* @throws NullPointerException if after is null
*
* @see #compose(Function)
*/
default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));
}
/**
* Returns a function that always returns its input argument.
*
* @param <T> the type of the input and output objects to the function
* @return a function that always returns its input argument
*/
static <T> Function<T, T> identity() {
return t -> t;
}
}
代码示例1
import java.util.function.Function;
public class Main {
public static void main(String[] args) {
Function<Long, String> function = aLong -> {
return "数字是: " + aLong;
};
String result = function.apply(123L);
System.out.println(result);
}
}
执行结果:
数字是: 123
代码示例2
import java.util.function.Function;
public class Main {
public static void main(String[] args) {
Function<Long, Long> function = aLong -> {
System.out.println("数字加2");
return aLong + 2;
};
Function<Long, Long> function2 = function.compose(aLong -> {
System.out.println("数字加10");
return aLong + 10;
});
Function<Long, Long> function3 = function2.andThen(aLong -> {
System.out.println("数字加100");
return aLong + 100;
});
Long result = function3.apply(123L);
System.out.println("执行结果: " + result);
}
}
执行结果:
数字加10
数字加2
数字加100
执行结果: 235
函数式接口 BiFunction:2个参数, 有返回值
全路径: java.util.function.BiFunction 。
Java 8 中引入。
源码:
package java.util.function;
import java.util.Objects;
/**
* Represents a function that accepts two arguments and produces a result.
* This is the two-arity specialization of {@link Function}.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #apply(Object, Object)}.
*
* @param <T> the type of the first argument to the function
* @param <U> the type of the second argument to the function
* @param <R> the type of the result of the function
*
* @see Function
* @since 1.8
*/
@FunctionalInterface
public interface BiFunction<T, U, R> {
/**
* Applies this function to the given arguments.
*
* @param t the first function argument
* @param u the second function argument
* @return the function result
*/
R apply(T t, U u);
/**
* Returns a composed function that first applies this function to
* its input, and then applies the {@code after} function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of output of the {@code after} function, and of the
* composed function
* @param after the function to apply after this function is applied
* @return a composed function that first applies this function and then
* applies the {@code after} function
* @throws NullPointerException if after is null
*/
default <V> BiFunction<T, U, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t, U u) -> after.apply(apply(t, u));
}
}
代码示例
import java.util.function.BiFunction;
public class Main {
public static void main(String[] args) {
BiFunction<Long, Long, Long> add = (num1, num2) -> {
return num1 + num2;
};
Long result = add.apply(1L, 2L);
System.out.println("执行结果: " + result);
}
}
执行结果:
执行结果: 3
函数引用
这里给一个示例。
定义函数式接口如下:
@FunctionalInterface
public interface IProcessor<T> {
void process(T t);
}
使用 lambda:
public class Main {
public static void main(String[] args) {
IProcessor<Long> processor = aLong -> {
System.out.println(aLong);
};
processor.process(123L);
}
}
使用 lambda + 函数引用:
public class Main {
public static void main(String[] args) {
IProcessor<Long> processor = System.out::println;
processor.process(123L);
}
}