Hadoop 2.4 单词计数并获取最大词频


#大数据


2014-11-17

这里的“词频”是指单词出现的频数,也就是次数。

Hadoop 2.4 实现单词计数 中已经论述了如何进行单词计数,其处理的结果保存在HDFS中的/output目录下,其中有一文件_SUCCESS是空文件(因为是空文件,所以可以忽略),表示这个JOB成功执行了。 另外一个文件是part-r-00000r代表着这个文件是reduce的结果。

现在对/output中的文件进行处理,获取最大词频。创建java文件MaxNum.java,内容如下:

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MaxNum {



	public static class MaxNumMapper extends
			Mapper<Object, Text, IntWritable, IntWritable> {

		private final static IntWritable onlyKey = new IntWritable(1);

		public void map(Object key, Text value, Context context)
				throws IOException, InterruptedException {
			String numStr = value.toString().split("\t")[1];
			context.write(onlyKey, new IntWritable(Integer.parseInt(numStr)));
		}
	}

	public static class MaxNumReducer extends
			Reducer<IntWritable, IntWritable, Text, IntWritable> {

		private final static Text onlyKey = new Text("max");
		private IntWritable result = new IntWritable();

		public void reduce(IntWritable key, Iterable<IntWritable> values,
				Context context) throws IOException, InterruptedException {
			int max_num = 0;
			for (IntWritable val : values) {
				if ( max_num < val.get()) {
					max_num = val.get();
				}
			}
			result.set(max_num);
			context.write(onlyKey, result);
		}
	}

	public static void main(String[] args) throws Exception {

		Configuration conf2 = new Configuration();
		Job job2 = Job.getInstance(conf2, "get max number");

		job2.setJarByClass(WordCountAndMaxNum.class);
		
		job2.setMapperClass(MaxNumMapper.class);
		job2.setMapOutputKeyClass(IntWritable.class);
		job2.setMapOutputValueClass(IntWritable.class);	
	
		
 //     job2.setCombinerClass(MaxNumReducer.class);
		job2.setReducerClass(MaxNumReducer.class);
		job2.setOutputKeyClass(Text.class);
		job2.setOutputValueClass(IntWritable.class);
		
		FileInputFormat.setInputPaths(job2, "/output");
		FileOutputFormat.setOutputPath(job2, new Path("/output2"));
		
		job2.waitForCompletion(true);

	}
}

注意,在main()函数中job2.setCombinerClass(MaxNumReducer.class);被注释掉了,如果不注释掉,在运行时会产生这样一个错误:

Error: java.io.IOException: wrong key class: class org.apache.hadoop.io.Text is not class org.apache.hadoop.io.IntWritable

原因是这样的。Combiner过程发生在Map和Reduce之间,它是一个微型的Reduce(一个Combiner Task处理的数据量较小)。在设置Combiner后,意味着这整个JOB有两次Reduce,第一次是Combiner TASK调用MaxNumReducer类,输出的键值类型是<Text, IntWritable>,该输出会作为第二次Reduce的输入;第二次是Reduce TASK调用MaxNumReducer类,要求输入的键值类型为IntWritable, IntWritable,由此便产生了类型的冲突。

如果一定要加上Combiner,有两个方案: 1、修改MaxNumReducer类; 2、再添加一个继承了Reducer的类供Combiner单独使用。

下面我们将单词计数和获取最大词频整合在一起,创建WordCountAndMaxNum.java,内容如下:

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountAndMaxNum {

	public static class TokenizerMapper extends
			Mapper<Object, Text, Text, IntWritable> {

		private final static IntWritable one = new IntWritable(1);
		private Text word = new Text();

		public void map(Object key, Text value, Context context)
				throws IOException, InterruptedException {
			StringTokenizer itr = new StringTokenizer(value.toString());
			while (itr.hasMoreTokens()) {
				word.set(itr.nextToken());
				context.write(word, one);
			}
		}
	}

	public static class IntSumReducer extends
			Reducer<Text, IntWritable, Text, IntWritable> {
		private IntWritable result = new IntWritable();

		public void reduce(Text key, Iterable<IntWritable> values,
				Context context) throws IOException, InterruptedException {
			int sum = 0;
			for (IntWritable val : values) {
				sum += val.get();
			}
			result.set(sum);
			context.write(key, result);
		}
	}


	public static class MaxNumMapper extends
			Mapper<Object, Text, IntWritable, IntWritable> {

		private final static IntWritable onlyKey = new IntWritable(1);

		public void map(Object key, Text value, Context context)
				throws IOException, InterruptedException {
			String numStr = value.toString().split("\t")[1];
			context.write(onlyKey, new IntWritable(Integer.parseInt(numStr)));
		}
	}

	public static class MaxNumReducer extends
			Reducer<IntWritable, IntWritable, Text, IntWritable> {

		private final static Text onlyKey = new Text("max");
		private IntWritable result = new IntWritable();

		public void reduce(IntWritable key, Iterable<IntWritable> values,
				Context context) throws IOException, InterruptedException {
			int max_num = 0;
			for (IntWritable val : values) {
				if ( max_num < val.get()) {
					max_num = val.get();
				}
			}
			result.set(max_num);
			context.write(onlyKey, result);
		}
	}

	public static void main(String[] args) throws Exception {

		Configuration conf1 = new Configuration();
		Job job1 = Job.getInstance(conf1, "word count");

		job1.setJarByClass(WordCountAndMaxNum.class);
		
		job1.setMapperClass(TokenizerMapper.class);
		job1.setMapOutputKeyClass(Text.class);  //!
		job1.setMapOutputValueClass(IntWritable.class); //!
		
		job1.setCombinerClass(IntSumReducer.class);
		job1.setReducerClass(IntSumReducer.class);
		job1.setOutputKeyClass(Text.class);
		job1.setOutputValueClass(IntWritable.class);
		
		FileInputFormat.setInputPaths(job1, "/input");
		FileOutputFormat.setOutputPath(job1, new Path("/output"));
		
		job1.waitForCompletion(true);

		// --

		Configuration conf2 = new Configuration();
		Job job2 = Job.getInstance(conf2, "get max number");

		job2.setJarByClass(WordCountAndMaxNum.class);
		
		job2.setMapperClass(MaxNumMapper.class);
		job2.setMapOutputKeyClass(IntWritable.class);
		job2.setMapOutputValueClass(IntWritable.class);	
	
		
//		job2.setCombinerClass(MaxNumReducer.class);
		job2.setReducerClass(MaxNumReducer.class);
		job2.setOutputKeyClass(Text.class);
		job2.setOutputValueClass(IntWritable.class);
		
		FileInputFormat.setInputPaths(job2, "/output");
		FileOutputFormat.setOutputPath(job2, new Path("/output2"));
		
		job2.waitForCompletion(true);

	}
}

仍然处理 Hadoop 2.4 实现单词计数中使用的文本,结果如下:

zsh >> $HADOOP_PREFIX/bin/hadoop fs -cat /output2/part-r-00000                 
max	3

我在编码过程中遇到过这样一个问题:

java.io.IOException: Type mismatch in key from map: expected org.apache.hadoop.io.Text, received org.apache.hadoop.io.LongWritable

可以在Type mismatch in key from map: expected org.apache.hadoop.io.Text, recieved org.apache.hadoop.io.LongWritable找到答案。



( 本文完 )