2014-09-07
k-medoids聚类也可以叫做K中心点聚类,属于划分算法,在维基百科上给出了很详细的解释和示例,见k-medoids。这个方法和K-means很像,但不是K-means的变种。像k-medians等聚类方法,可以看做K-means的变种。
相对于K-means而言,k-medoids的优点是聚类结果不易受离群点、异常值的影响,缺点是算法复杂度稍高。
medoids在谷歌翻译中,翻译为中心点
。
维基百科给出的算法如下:
- Initialize: randomly select (without replacement) k of the n data points as the medoids
- Associate each data point to the closest medoid. ("closest" here is defined using any valid distance metric, most commonly Euclidean distance, Manhattan distance or Minkowski distance)
- ...
For each medoid m {
For each non-medoid data point o {
Swap m and o and compute the total cost of the configuration
}
}
- Select the configuration with the lowest cost.
- Repeat steps 2 to 4 until there is no change in the medoid.
再添加个资料:Partitioning Around Medoids (PAM)。